Seagrass Canopy Photosynthetic Response Is a Function of Canopy Density and Light Environment: A Model for Amphibolis griffithii

نویسندگان

  • John D. Hedley
  • Kathryn McMahon
  • Peter Fearns
چکیده

A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of experimental reduction of light availability on the seagrass Amphibolis griffithii

The response of the meadow-forming seagrass Amphibolis griffithii (Black) den Hartog to light reduction was examined over a 3 mo period and a subsequent 1 mo recovery period. Morphological and physiological variables were measured in meadows subjected to an average reduction in photosynthetic photon flux density (PPFD) of 88% relative to unshaded controls. Leaf biomass, leaf cluster density and...

متن کامل

A Biooptical Model of Irradiance Distribution and Photosynthesis in Seagrass Canopies

Although extremely vulnerable to coastal eutrophication, seagrasses represent important structuring elements and sources of primary production in shallow waters. They also generate an optical signature that can be tracked remotely. Accurate knowledge of light absorption and scattering by submerged plant canopies permits the calculation of important plantand ecosystem-level properties, including...

متن کامل

Recovery from the impact of light reduction on the seagrass Amphibolis griffithii, insights for dredging management.

A large-scale, manipulative experiment was conducted to examine the extent and rate of recovery of meadows of the temperate Australian seagrass, Amphibolis griffithii to different light-reduction scenarios typical of dredging operations, and to identify potential indicators of recovery from light reduction stress. Shade cloth was used to mimic different intensities, durations and start times of...

متن کامل

Comparing Some Ecological Attributes of Cercis griffithii Boiss. on Geomorphic Faces of Arghavan Valley local of Binalood county, Khorasan Razavi province

The Arghavan Valley of Binalood county located at Khorasan Razavi province, is a habitat for valuable and almost rare plant community in eastern Iran which dominated by Cercis griffithii Boiss. shrubs. This habitat is very important for environmental aspects and combat desertification. It’s documented where arid and semi-arid shrublands destroyed, it is very difficult to restore. The Arghavan v...

متن کامل

Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach

Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach   Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014